
ODE Lecture Notes, Part II, for Fall Semester 2022

Revised on 2022-12-1

Remark 0.1 This is the second part for my 2022 fall semester ODE course.

Remark 0.2 This notes is based on the textbook "Elementary Di¤erential Equations & Bound-
ary Value Problems, 10th Edition" by Boyce & DiPrima. However, I will not follow the
book exactly. Lecture notes will be given to you via email whenever necessary.

Chapter 3: Second order linear equations.

Method of undetermined coe¢ cients (this is Section 3.5 of the book).
See p. 182, Table 3.5.1.

Remark 0.3 The "method of undetermined coe¢ cients" provides you a way to "guess" the form
of a particular solution. Then we plug in the form into the equation to �nd a correct particular
solution.

In this section, we consider a nonhomogeneous second order linear equation with constant coef-
�cients, given by

ay00 (t) + by0 (t) + cy (t) = g (t) ; a 6= 0; t 2 (�1;1) ; (1)

where g (t) has one of the following forms

Pn (t) e
�t; Pn (t) e

�t cos �t; Pn (t) e
�t sin �t: (2)

Here Pn (t) = a0tn+a1tn�1+���+an�1t+an; a0 6= 0; is a polynomial with degree n and �; �; � 2 R
with � > 0: Note that the case � = 0 and the case � = 0 are allowed. In case � = 0 and � =
0; Pn (t) e

�t = Pn (t) is just a polynomial in t and Pn (t) e�t cos �t becomes Pn (t) cos �t.
We know that the general solution y (t) of (1) is given by

y (t) = c1y1 (t) + c2y2 (t) + yp (t) ; t 2 (�1;1) ;

where yp (t) is a particular solution of the nonhomogeneous equation (1) and y1 (t) ; y2 (t) are
solutions of ay00 (t) + by0 (t) + cy (t) = 0; determined by the roots of the characteristic equation
ar2 + br + c = 0: Since we know how to �nd y1 (t) ; y2 (t), it su¢ ces to �nd a particular solution
yp (t) of (1).
The "method of undetermined coe¢ cients" says that we can try a particular solution

of the form given by Table 3.5.1 in p. 182 of the book and then plug in the form into the
nonhomogeneous equation (1) to determine the coe¢ cients. After that, one can �nd a
particular solution yp (t) :

Remark 0.4 Explain Table 3.5.1 in p. 182 ....

Remark 0.5 (Important.) The function g (t) in equation (1) must have the form in (2); otherwise,
the "method of undetermined coe¢ cients" does not work.
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Motivation of the undetermined coe¢ cients method.

Motivation using the equation y0 (t)� �y (t) = a0e�t: One can use simple �rst order equation
to explain the method. Consider the simple equation

y0 (t)� �y (t) = a0e�t; a0; �; � are constants, a0 6= 0: (3)

The characteristic equation of the homogeneous equation y0 (t)��y (t) = 0 is r�� = 0; which
has root r = � and so the general solution of y0 (t)��y (t) = 0 is given by y (t) = Ce�t for arbitrary
constant C: To �nd the general solution of (3), it su¢ ces to �nd a particular solution yp (t) :

Case 1: If � 6= � (i.e. � is not a root of the characteristic equation r � � = 0), then the
function �

e�t
�0 � � �e�t� = (�� �) e�t

is not zero and is still of the form Ke�t for constant K = �� � 6= 0: This form matches with the
function a0e�t on the right hand side of the equation. Therefore, if we try yp (t) to have the form

yp (t) = A0e
�t (4)

and choose the coe¢ cient A0 suitably, we can obtain a particular solution of the equation (3).
To �nd A0; we plug yp (t) = A0e�t into (3) and get the identity

(�� �)A0e�t = a0e�t; �� � 6= 0; a0 6= 0: (5)

Hence, if we choose A = a0
��� (denominator is not zero), we can obtain a particular solution yp (t) =

a0
���e

�t of (3). Thus the general solution of (3) is

y (t) = Ce�t +
a0

�� �e
�t; t 2 (�1;1) ; C is arbitrary const.. (6)

Case 2: If � = � (i.e. � is a root of the characteristic equation r � � = 0), then identity (5)
will becomes 0 = a0e�t; which is impossible and it suggests that we cannot try yp (t) to have the
form yp (t) = A0e

�t: instead, if we try

yp (t) = t � A0e�t; (7)

and plug it into (3), we get the identity

A0e
�t + �A0te

�t � �A0te�t = a0e�t (note that � = �).

Hence if we choose A0 = a0; the function yp (t) = t � a0e�t will be a particular solution of (3) and
from this we can obtain general solution of (3).

Motivation using the equation y0 (t) � �y (t) = (a0 + b0t)e�t: One step further, now we look
at the equation

y0 (t)� �y (t) = (a0 + b0t)e�t; a0; b0; �; � are constants, a0 6= 0; b0 6= 0: (8)

Case 1: If � 6= � (i.e. � is not a root of the characteristic equation r � � = 0), based on the
above observation, the only way you can try is

yp (t) = (A0 +B0t)e
�t for some constants A0; B0; (9)

and if you plug it into equation (8), you get

B0e
�t + �(A0 +B0t)e

�t � �(A0 +B0t)e�t = (a0 + b0t)e�t;
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which is same as
B0 + �(A0 +B0t)� �(A0 +B0t) = a0 + b0t; (10)

and you need to choose A0; B0 satisfying(
B0 + (�� �)A0 = a0

(�� �)B0 = b0; �� � 6= 0;

and conclude that if we choose

A0 =
a0

�� � �
b0

(�� �)2
; B0 =

b0
�� �; � 6= �; (11)

then yp (t) in (9) will be a particular solution of the ODE (8).

Case 2: If � = � (i.e. � is a root of the characteristic equation r � � = 0), then the identity
(10) becomes B0 = a0 + b0t; which is impossible to hold. Therefore you need to modify your
choice of yp (t) in (9): A natural next choice is (increase the order of the coe¢ cient polynomial) to
try:

yp (t) = (A0 +B0t+ C0t
2)e�t for some constants A0; B0; C0:

However, note that A0e�t is already a solution of the homogeneous equation y0 (t)��y (t) = 0; there
is no need to include it. Hence we choose

yp (t) = (B0t+ C0t
2)e�t = t (B0 + C0t) e

�t

and for consistency of notations, we write it as

yp (t) = t � (A0 +B0t) e�t for some constants A0; B0: (12)

If you plug the above yp (t) into (8), you get

(A0 +B0t) e
�t + tB0e

�t = (a0 + b0t)e
�t

and conclude

A0 = a0; B0 =
b0
2
:

Thus when � = �; the function

yp (t) = t �
�
a0 +

b0
2
t

�
e�t; t 2 (�1;1)

will be a particular solution of the equation (8).

We can summarize the above method in the following:

Lemma 0.6 (Motivation of the undetermined coe¢ cients method via �rst-order equa-
tion.) Consider the �rst order nonhomogeneous linear equation

y0 (t)� �y (t) = a0e�t; a0; �; � are constants, a0 6= 0: (13)

If � 6= � (i.e. � is not a root of the characteristic equation r � � = 0), then a particular solution
yp (t) of (13) has the form

yp (t) = A0e
�t for some constant A0: (14)
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If � = � (i.e. � is a root of the characteristic equation r�� = 0), then a particular solution yp (t)
of (13) has the form

yp (t) = t � A0e�t for some constant A0: (15)

Similarly, if we consider the �rst order nonhomogeneous linear equation

y0 (t)� �y (t) = (a0 + b0t)e�t; a0; b0; �; � are constants, a0 6= 0; b0 6= 0: (16)

If � 6= � (i.e. � is not a root of the characteristic equation r � � = 0), then a particular solution
yp (t) of (16) has the form

yp (t) = (A0 +B0t)e
�t for some constants A0; B0; (17)

If � = � (i.e. � is a root of the characteristic equation r�� = 0), then a particular solution yp (t)
of (16) has the form

yp (t) = t � (A0 +B0t)e�t for some constants A0; B0: (18)

From Lemma 0.6, you can understand the undetermined coe¢ cients method in Table 3.5.1 in
p. 182 of the book.

Remark 0.7 State the rule in Table 3.5.1 in p. 182 of the textbook here.

P. 183, Case 2. (Read this section by yourself.)

Remark 0.8 This section gives a detailed proof on Case 2 in p. 183 of the textbook, showing
that the method does work !! If you are interested, you can read it by yourself.

This is to verify that the method of undetermined coe¢ cients can be used to solve a
nonhomogeneous second order linear ODE (with constant coe¢ cients) of the form

ay00 (t) + by0 (t) + cy (t) = Pn (t) e
�t; a 6= 0; (19)

where
Pn (t) = a0t

n + a1t
n�1 + � � �+ an�1t+ an

is a polynomial with degree n:

Remark 0.9 Of course, one can also use reduction method to solve (19), but the method of
undetermined coe¢ cients will be easier for g (t) of the form Pn (t) e

�t:

We let yp (t) = u (t) e�t be the particular solution to be found (there is no other better try than
this), where u (t) is to be determined. Plug yp (t) = u (t) e�t into (19) to get

a
�
u00 (t) e�t + 2u0 (t)�e�t + u (t)�2e�t

�
+ b
�
u0 (t) e�t + u (t)�e�t

�
+ cu (t) e�t = Pn (t) e

�t:

We can cancel e�t and the equation becomes

au00 (t) + (2a�+ b)u0 (t) +
�
a�2 + b�+ c

�
u (t)| {z }

= Pn (t) = a0t
n + a1t

n�1 + � � �+ an�1t+ an: (20)

Assume �rst that � is not a root of the characteristic equation ar2+br+c = 0: Hence a�2+
b�+ c 6= 0: One can try

u (t) = A0t
n + A1t

n�1 + � � �+ An�1t+ An: (21)
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Note that (
u0 (t) = nA0t

n�1 + (n� 1)A1tn�2 + � � �+ 2An�2t+ An�1

u00 (t) = n (n� 1)A0tn�2 + (n� 1) (n� 2)A1tn�3 + � � �+ 2An�2:
If we plug (21) into (20) and compare coe¢ cients, we can get the following system of equations
(note that Pn (t) = a0tn + a1tn�1 + � � �+ an�1t+ an):8>>>>>>>>><>>>>>>>>>:

(a�2 + b�+ c)A0 = a0 (coe¢ cients of tn), where a�2 + b�+ c 6= 0

(2a�+ b)nA0 + (a�
2 + b�+ c)A1 = a1 (coe¢ cients of tn�1)

an (n� 1)A0 + (2a�+ b) (n� 1)A1 + (a�2 + b�+ c)A2 = a2 (coe¢ cients of tn�2)

� � �

a2An�2 + (2a�+ b)An�1 + (a�
2 + b�+ c)An = an (coe¢ cients of t0).

(22)

Then one can solve all A0; :::; An and obtain u (t) ; and conclude that y (t) = u (t) e�t is a solution
of the nonhomogeneous equation (19).
If � is a root with multiplicity s = 1; then a�2+ b�+ c = 0 and 2a�+ b 6= 0: The above trial

solution (21) does not work out. Instead we try

u (t) = t
�
A0t

n + A1t
n�1 + � � �+ An�1t+ An

�
= A0t

n+1 + A1t
n + � � �+ An�1t2 + Ant

Then (20) becomes

au00 (t) + (2a�+ b)u0 (t)| {z } = Pn (t) = a0tn + a1tn�1 + � � �+ an�1t+ an (23)

and (22) becomes8>>>>><>>>>>:

(2a�+ b) (n+ 1)A0 = a0 (coe¢ cients of tn), where 2a�+ b 6= 0

an (n+ 1)A0 + (2a�+ b)nA1 = a1 (coe¢ cients of tn�1)

� � �

a2An�2 + (2a�+ b)An = an (coe¢ cients of t0).

(24)

In this case we can solve all A0; :::; An and conclude that y (t) = u (t) e�t is a solution of (19).
Finally if � is a root with multiplicity s = 2; then a�2 + b� + c = 0 and 2a� + b = 0; but

a 6= 0: Then we try

u (t) = t2
�
A0t

n + A1t
n�1 + � � �+ An�1t+ An

�
= A0t

n+2 + A1t
n+1 + � � �+ Ant2:

Now (20) becomes
au00 (t)| {z } = Pn (t) = a0tn + a1tn�1 + � � �+ an�1t+ an (25)

and (22) becomes8>>>>><>>>>>:

a (n+ 2) (n+ 1)A0 = a0 (coe¢ cients of tn), where a 6= 0

an (n+ 1)A1 = a1 (coe¢ cients of tn�1)

� � �

a2An = an (coe¢ cients of t0).

(26)

Again, we can solve all A0; :::; An and obtain a particular solution of (19).
In conclusion, the method works for the case g (t) = Pn (t) e�t; � 2 R: The veri�cation is done.�
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Example 0.10 y00 + 3y = 4e�5t; yp (t) =
1
7
e�5t:

Example 0.11 y00 � 3y0 � 4y = 2e�t; yp (t) = �2
5
te�t:

Example 0.12 y00 + 2y = sin 3t; yp (t) = �1
7
sin 3t (since there is no �rst order term y0; the

solution yp (t) is also of the form sin 3t).

Example 0.13 y00 + 9y = sin 3t; yp (t) = �1
6
t cos 3t:

Example 0.14 y00 � 3y = t2; yp (t) = �1
3
t2 � 2

9
:

Example 0.15 y00 � 3y0 = t+ t2; yp (t) = t
�
�1
9
t2 � 5

18
t� 5

27

�
:

Example 0.16 Do Example 3 in p. 179.

Example 0.17 Find general solution of the equation

y00 + 2y0 + y = te�t:

Solution:

By the rule for yp (t) ; it has the form

yp (t) = t
s (At+B) e�t =

�
At3 +Bt2

�
e�t; where s = 2:

Plugging it into equation to get(
[(6At+ 2B) e�t � 2 (3At2 + 2Bt) e�t + (At3 +Bt2) e�t]

+2 [(3At2 + 2Bt) e�t � (At3 +Bt2) e�t] + (At3 +Bt2) e�t
= te�t:

Hence, after simpli�cation, we need to solve 6At+ 2B = t; which gives

A =
1

6
; B = 0:

Thus yp (t) = 1
6
t3e�t is a particular solution of the equation. The general solution is

y (t) = c1e
�t + c2te

�t +
1

6
t3e�t; t 2 (�1;1) :

�

Remark 0.18 If an equation has the form

ay00 + by0 + cy = f (t) + g (t) ; (27)

where f (t) and g (t) both have the form in the above case 1 or case 2 (say f (t) = t2e5t and
g (t) = (t3 + 2t2 � 6t� 5) e�t cos 7t), then use the undetermined coe¢ cients to �nd yp (t) for the
equation

ay00 + by0 + cy = f (t)

and then use the same method to �nd ~yp (t) for the equation

ay00 + by0 + cy = g (t) :

Then the general solution of (27) is given by

x (t) = yp (t) + ~yp (t) + c1y1 (t) + c2y2 (t) ;

where c1x1 (t) + c2x2 (t) is the general solution of the corresponding homogeneous equation.
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Example 0.19 Find the correct form of a particular solution of the equation

y00 � 4y0 + 4y = 3t2e2t + 2t sin t� 8et cos 2t:

Solution:

The correct form is

yp (t) = t
2
�
At2 +Bt+ C

�
e2t| {z }+(Dt+ E) cos t+ (Ft+G) sin t| {z }+Ket cos 2t+ Let sin 2t| {z };

where A; :::; L are constant coe¢ cients to be determined. �

Example 0.20 (This is Exercise 30 in p. 185 with one extra term.) Find the general
solution of the equation

y00 + �2y =
NX
m=1

(am sinm�t+ bm cosm�t) ; t 2 (�1;1) ; (28)

where � > 0 and � 6= m� for m = 1; 2; :::; N:

Solution:

The two roots of the characteristic polynomial r2 + �2 = 0 are r = ��i; where � 6= m� for any
m = 1; :::; N: Hence for each �xed m = 1; :::; N; we try a particular solution ym (t) of the form

ym (t) = Am sinm�t+Bm cosm�t; (29)

which is for the equation
y00 + �2y = am sinm�t+ bm cosm�t: (30)

We plug the above ym (t) into equation (30) to get�
�2 �m2�2

�
Am sinm�t+

�
�2 �m2�2

�
Bm cosm�t = am sinm�t+ bm cosm�t

and obtain

Am =
am

�2 �m2�2
; Bm =

bm
�2 �m2�2

; m = 1; :::; N:

Hence, the general solution of the equation is given by (add all ym (t) together):

y (t) = c1 sin�t+ c2 cos�t+

NX
m=1

�
am

�2 �m2�2

�
sinm�t+

�
bm

�2 �m2�2

�
cosm�t:

The proof is done. �

Variation of parameters method (this is Section 3.6 of the book) for
nonhomogeneous linear equations with variable coe¢ cients.

Remark 0.21 (Be careful.) Throughout this section, we will focus on equation (31), which has
leading coe¢ cient 1 for y00 (t) :

In this section we focus on a nonhomogeneous linear equation with variable coe¢ cients
(which has leading coe¢ cient 1), given by

y00 + p (t) y0 + q (t) y = g (t) ; t 2 I; (31)

7



where p (t) ; q (t) ; g (t) are given continuous function on some interval I � R and here the function
g (t) can be an arbitrary.
Assume we are given a fundamental set of solutions y1 (t) and y2 (t) for the corresponding

homogeneous equation y00 + p (t) y0 + q (t) y = 0 on I: To solve (31), we try a solution of the form:

y (t) = u1 (t) y1 (t) + u2 (t) y2 (t) ; t 2 I (32)

and look for suitable u1 (t) and u2 (t) : We will solve a �rst-order system of ODE for u1 (t) and
u2 (t) :

Remark 0.22 (Useful observation.) One can view (32) as a generalization of the reduction
method because if we only try y (t) = u1 (t) y1 (t) ; it is exactly the reduction method.

Remark 0.23 If an equation has the form

P (t) y00 (t) +Q (t) y0 (t) +R (t) y (t) = G (t) ; t 2 I; P (t) 6= 0 on I; (33)

then you should divide the whole equation by P (t) �rst and then apply the method below.

We need to impose suitable conditions on u1 (t) and u2 (t) so that the above y (t) is a solution
of (31). We �rst note that

y0 (t) = [u01 (t) y1 (t) + u
0
2 (t) y2 (t)]| {z }+ [u1 (t) y01 (t) + u2 (t) y02 (t)]

and impose the �rst condition

u01 (t) y1 (t) + u
0
2 (t) y2 (t)| {z } = 0; t 2 I: (34)

Remark 0.24 If we impose the condition on the term u1 (t) y
0
1 (t) + u2 (t) y

0
2 (t) ; then in y

00 (t) we
will encounter u001 (t) and u

00
2 (t) : With this, the method will not work at all.

Then, under the assumption of (34), y0 (t) becomes

y0 (t) = u1 (t) y
0
1 (t) + u2 (t) y

0
2 (t) ; t 2 I

and so
y00 (t) = [u01 (t) y

0
1 (t) + u

0
2 (t) y

0
2 (t)]| {z }+ [u1 (t) y001 (t) + u2 (t) y002 (t)] ; t 2 I:

Then we impose the second condition as

u01 (t) y
0
1 (t) + u

0
2 (t) y

0
2 (t)| {z } = g (t) : (35)

Under the assumption of (34) and (35), we conclude(
y0 (t) = u1 (t) y

0
1 (t) + u2 (t) y

0
2 (t)

y00 (t) = g (t) + u1 (t) y
00
1 (t) + u2 (t) y

00
2 (t)

and so

y00 (t) + p (t) y0 (t) + q (t) y (t)

= [g (t) + u1 (t) y
00
1 (t) + u2 (t) y

00
2 (t)] + p (t) [u1 (t) y

0
1 (t) + u2 (t) y

0
2 (t)] + q (t) [u1 (t) y1 (t) + u2 (t) y2 (t)]

= g (t) + u1 (t)

�
y001 (t) + p (t) y

0
1 (t) + q (t) y1 (t)| {z }

�
+ u2 (t)

�
y002 (t) + p (t) y

0
2 (t) + q (t) y2 (t)| {z }

�
= g (t) + u1 (t) � 0 + u2 (t) � 0 = g (t) ; t 2 I;
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which says that y (t) is indeed a solution of the equation (31).
It remains to claim that (34) and (35) can be satis�ed. For this purpose, we need to solve the

following �rst-order system of ODE for u1 (t) and u2 (t) :(
u01 (t) y1 (t) + u

0
2 (t) y2 (t) = 0

u01 (t) y
0
1 (t) + u

0
2 (t) y

0
2 (t) = g (t)

(36)

and get

u01 (t) =

���� 0 y2 (t)
g (t) y02 (t)

�������� y1 (t) y2 (t)
y01 (t) y02 (t)

���� = �
y2 (t) g (t)

W (t)
; u02 (t) =

���� y1 (t) 0
y01 (t) g (t)

�������� y1 (t) y2 (t)
y01 (t) y02 (t)

���� =
y1 (t) g (t)

W (t)
;

where W (t) =W (y1; y2) (t) is the Wronskian of y1 (t) and y2 (t) on I:
The above gives

u1 (t) = �
Z
y2 (t) g (t)

W (t)
dt+ c1; u2 (t) =

Z
y1 (t) g (t)

W (t)
dt+ c2; (37)

and the general solution of (31) is given by

y (t) =

�
�
Z
y2 (t) g (t)

W (t)
dt+ c1

�
y1 (t) +

�Z
y1 (t) g (t)

W (t)
dt+ c2

�
y2 (t)

= c1y1 (t) + c2y2 (t) + yp (t) ;

where

yp (t) = �
�Z

y2 (t) g (t)

W (t)
dt

�
y1 (t) +

�Z
y1 (t) g (t)

W (t)
dt

�
y2 (t) (38)

is a particular solution of (31). The above method is called "variation of parameters" method.
It is a powerful method.

Remark 0.25 (Important.) If the equation (31) has initial conditions y (t0) = y0; y
0 (t0) =

z0; t0 2 I; then there are two ways to �nd the unique solution y (t) : (1) : If you know yp (t)
explicitly, use the formula y (t) = c1y1 (t)+c2y2 (t)+yp (t) to �nd c1; c2: (2) : If you do not know
yp (t) explicitly, you can use de�nite integrals to write the general solution y (t) as

y (t) =

8><>:
c1y1 (t) + c2y2 (t)

+

�
�
�Z t

t0

y2 (s) g (s)

W (s)
ds

�
y1 (t) +

�Z t

t0

y1 (s) g (s)

W (s)
ds

�
y2 (t)

�
; t 2 I

(39)

and then require c1; c2 to satisfy the following(
c1y1 (t0) + c2y2 (t0) = y0

c1y
0
1 (t0) + c2y

0
2 (t0) = z0:

This is due to the fact that the particular solution

yp (t) = �
�Z t

t0

y2 (s) g (s)

W (s)
ds

�
y1 (t) +

�Z t

t0

y1 (s) g (s)

W (s)
ds

�
y2 (t) ; t 2 I (40)

satis�es
y (t0) = y

0 (t0) = 0: (41)

To see this, we clearly have yp (t0) = 0: As for y0p (t0) = 0; we note that

y0p (t0) = �
�
y2 (t0) g (t0)

W (t0)

�
y1 (t0) + 0 � y01 (t0) +

�
y1 (t0) g (t0)

W (t0)

�
y2 (t0) + 0 � y02 (t0) = 0: (42)
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Example 0.26 (This is Example 1 in p. 186.) Solve the equation

y00 (t) + 4y (t) = 3 csc t; 0 < t < �: (43)

Solution:

Read the solution in the textbook by yourself. �

Example 0.27 (This is Exercise 5 in p. 190.) Solve the equation

y00 (t) + y (t) = 2 tan t; ��
2
< t <

�

2
: (44)

Remark 0.28 Note that one cannot use the undetermined coe¢ cients method to solve (44).

Solution:

Since we know two independent solutions y1 (t) = cos t and y2 (t) = sin t of y00 (t) + y (t) = 0; we
can use variation of parameters method. We �rst compute

W (t) =W (y1; y2) (t) =

���� cos t sin t
� sin t cos t

���� = 1
and by (38) we know that the general solution of (44) is given by

y (t) = c1 cos t+ c2 sin t+

�
�
Z
y2 (t) � 2 tan t

W (t)
dt

�
y1 (t) +

�Z
y1 (t) � 2 tan t

W (t)
dt

�
y2 (t) ;

where

�
Z
y2 (t) � 2 tan t

W (t)
dt = �

Z
(sin t) (2 tan t) dt = �2

Z
(1� cos2 t)

cos
dt = �2

Z
(sec t� cos t) dt

and Z
y1 (t) � 2 tan t

W (t)
dt =

Z
(cos t) (2 tan t) dt = 2

Z
sin tdt:

We conclude

y (t) = c1 cos t+ c2 sin t+

�
�2
Z
(sec t� cos t) dt

�
cos t+

�
2

Z
sin tdt

�
sin t

= c1 cos t+ c2 sin t+

�
�2
Z
sec tdt+ 2 sin t

�
cos t+ (�2 cos t) sin t

= c1 cos t+ c2 sin t+ (�2 log jsec t+ tan tj) cos t: (45)

�

Remark 0.29 (Compare with the reduction method.) (Read this remark by yourself.) If
we use reduction method, we can let y (t) = v (t) sin t (sin t is a solution of y00 (t) + y (t) = 0) and
get

v00 (t) sin t+ 2v0 (t) cos t� v (t) sin t+ v (t) sin t = 2 tan t;
which gives (let w (t) = v0 (t))

w0 (t) + 2
cos t

sin t
� w (t) = 2

cos t
; 0 < t <

�

2
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and then

w (t) = v0 (t) = e�
R
2 cos
sin t

dt

�Z
e
R
2 cos
sin t

dt 2

cos t
dt+ C

�
=

1

sin2 t

�
2

Z
sin t tan tdt+ C

�
=

1

sin2 t

�
2

Z
(sec t� cos t) dt+ C

�
=

C

sin2 t
+

1

sin2 t
(2 log jsec t+ tan tj � 2 sin t) :

Finally, we have

v (t) =

Z
C

sin2 t
dt+

Z
1

sin2 t
(2 log jsec t+ tan tj � 2 sin t) dt+K

= �C cot t+K +

Z
1

sin2 t
(2 log jsec t+ tan tj) dt| {z }�2

Z
1

sin t
dt;

where, by the integration by parts, we �ndZ
1

sin2 t
(2 log jsec t+ tan tj) dt| {z } = �

Z
(2 log jsec t+ tan tj) d (cot t)

= � (2 log jsec t+ tan tj) (cot t) + 2
Z

1

sin t
dt| {z }

and conclude

y (t) = v (t) sin t = y (t) = [�C cot t+K � (2 log jsec t+ tan tj) (cot t)] sin t
= c1 cos t+ c2 sin t� (2 log jsec t+ tan tj) cos t: (46)

We see that (46) is the same as (45). This method clearly involves more computations. This is
because we only make use of one solution sin t:

Example 0.30 (This is Exercise 10 in p. 190.) Solve the equation

y00 (t)� 2y0 (t) + y (t) = et

1 + t2
; t 2 (�1;1) :

Solution:

Since we know two independent solutions y1 (t) = et and y2 (t) = tet of y00 (t)�2y0 (t)+y (t) = 0;
we can use variation of parameters method. We �rst compute

W (t) =W (y1; y2) (t) =

���� et tet

et et + tet

���� = e2t
and so

y (t) =

 
�
Z
tet � et

1+t2

e2t
dt+ c1

!
et +

 Z
et � et

1+t2

e2t
dt+ c2

!
tet

=

�
�
Z

t

1 + t2
dt+ c1

�
et +

�Z
1

1 + t2
dt+ c2

�
tet

=

�
�1
2
log
�
1 + t2

�
+ c1

�
et +

�
tan�1 t+ c2

�
tet;

which is the general solution. �
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Example 0.31 Find the general solution of the equation

ty00 (t)� (1 + t) y0 (t) + y (t) = t2e2t; t 2 (0;1) ; (47)

given that y1 (t) = 1 + t and y2 (t) = et is a pair of fundamental solutions for the corresponding
homogeneous equation.

Solution:

To apply the variation of parameters method, we need to rewrite the equation to have
leading coe¢ cient of y00 (t) equal to 1: We have

y00 (t)�
�
1 + t

t

�
y0 (t) +

1

t
y (t) = te2t; t 2 (0;1) ;

and obtain g (t) = te2t: By the variation of parameters method, we have

yp (t) =

�
�
Z

y2 (t) g (t)

W (y1; y2) (t)
dt

�
y1 (t) +

�Z
y1 (t) g (t)

W (y1; y2) (t)
dt

�
y2 (t) ; t 2 (0;1) ;

where

W (y1; y2) (t) =

���� 1 + t et

1 et

���� = tet:
Hence

yp (t) =

�
�
Z
et � te2t
tet

dt

�
(1 + t) +

�Z
(1 + t) � te2t

tet
dt

�
et

=

�
�
Z
e2tdt

�
(1 + t) +

�Z
(1 + t) etdt

�
et

=

�
�1
2
e2t
�
(1 + t) +

�
tet
�
et =

1

2
(t� 1) e2t:

and conclude the general solution for equation (47):

y (t) = C1 (1 + t) + C2e
t +

1

2
(t� 1) e2t; t 2 (0;1) :

�

An interesting equation from "mechanics of vibrations".

Consider the equation

y00 (t) + y (t) = g (t) ; g (t) is continuous on I

with initial condition
y (t0) = y0; y0 (t0) = z0; t0 2 I:

This equation appears frequently inmechanics of vibrations. If we choose y1 (t) = cos t; y2 (t) =
sin t; then we have W (t) = W (y1; y2) (t) = 1 and by Remark 0.25 the particular solution yp (t)
(with yp (t0) = y0p (t0) = 0) in (40) is given by

yp (t) = �
�Z t

t0

y2 (s) g (s)

W (s)
ds

�
y1 (t) +

�Z t

t0

y1 (s) g (s)

W (s)
ds

�
y2 (t) ; W (s) � 1

= � (cos t)
Z t

t0

g (s) sin sds+ (sin t)

Z t

t0

g (s) cos sds

=

Z t

t0

g (s) (sin t cos s� cos t sin s) ds =
Z t

t0

g (s) sin (t� s) ds; t 2 I: (48)

12



The general solution of the homogeneous equation y00 (t)+y (t) = 0 satisfying the initial condition y (t0) =
y0; y

0 (t0) = z0; is given by

c1y1 (t) + c2y2 (t) = c1 cos t+ c2 sin t; t 2 I

and we need to �nd c1; c2 satisfying(
c1 cos t0 + c2 sin t0 = y0

�c1 sin t0 + c2 cos t0 = z0;

which gives
c1 = y0 cos t0 � z0 sin t0; c2 = y0 sin t0 + z0 cos t0;

and then

c1y1 (t) + c2y2 (t)

= (y0 cos t0 � z0 sin t0) cos t+ (y0 sin t0 + z0 cos t0) sin t
= y0 cos (t� t0) + z0 sin (t� t0) : (49)

Therefore the solution satisfying the initial condition is given by the nice solution formula:

y (t) = y0 cos (t� t0) + z0 sin (t� t0)| {z }+
Z t

t0

g (s) sin (t� s) ds| {z }; t 2 I: (50)

Now assume that I = (�1;1) and g (t) is a 2�-periodic function de�ned on (�1;1) (g (t)
usually comes from the external force acting on the mechanical system, say string vibration). The
particular solution yp (t) in (48) may not be 2�-periodic in general (but the homogeneous
part y0 cos (t� t0) + z0 sin (t� t0) is clearly 2�-periodic). Note that we have

yp (t+ 2�)� yp (t)

=

Z t+2�

t0

g (s) sin (t+ 2� � s) ds�
Z t

t0

g (s) sin (t� s) ds =
Z t+2�

t

g (s) sin (t� s) ds

= � (cos t)
Z t+2�

t

g (s) sin sds| {z }+(sin t)
Z t+2�

t

g (s) cos sds| {z }
= � (cos t)

Z 2�

0

g (s) sin sds+ (sin t)

Z 2�

0

g (s) cos sds

=

�
(� cos t; sin t) ;

�Z 2�

0

g (s) sin sds;

Z 2�

0

g (s) cos sds

��
and so we have yp (t+ 2�) = yp (t) for all t 2 (�1;1) if and only if the 2�-periodic function
g (s) satis�es Z 2�

0

g (s) sin sds =

Z 2�

0

g (s) cos sds = 0: (51)

If we take g (t) = cos t ((51) is not satis�ed), then one can check that yp (t) = 1
2
t sin t is a particular

solution (with yp (0) = y0p (0) = 0) of the equation

y00 (t) + y (t) = cos t;

but it is not 2�-periodic even if g (t) = cos t is 2�-periodic. In fact, one can see that yp (t) in (48)
is 2�-periodic if and only if g (t) is 2�-periodic and satis�es (51), for example, say g (t) = cos 2t:
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Nonhomogeneous Euler equation.

One can combine the variation of parameters method and change of variables to solve a nonho-
mogeneous Euler equation, given by

t2y00 (t) + �ty0 (t) + �y (t) = f (t) ; t 2 (0;1) ; �; � constants, (52)

where f (t) can be any arbitrary continuous function de�ned on t 2 (0;1) : By the change of
variables x = log t; x 2 (�1;1) ; the above equation becomes

d2~y

dx2
+ (�� 1) d~y

dx
+ �~y (x) = F (x) ; x 2 (�1;1) ; (53)

where ~y (x) = y (ex) and F (x) = f (ex) :We can know a pair of fundamental solutions fy1 (t) ; y2 (t)g for
~y00 (x)+(�� 1) ~y0 (x)+�~y (x) = 0 and then use the variation of parameters method to �nd the
general solution ~y (x) of (53) and then change back to get y (t) : It will be the general solution of
(52). On the other hand, if F (x) in (53) has the forms appeared in the undetermined coe¢ cients
method, then you can use that method to �nd the general solution ~y (x) of (53).

Remark 0.32 In case the Euler equation has the form

At2y00 (t) +Bty0 (t) + Cy (t) = f (t) ; t 2 (0;1) ; A 6= 0; B; C are constants,

then equation (53) becomes

A
d2~y

dx2
+ (B � A) d~y

dx
+ C~y (x) = F (x) : (54)

Summary of solution methods for second order linear equations.

This is a summary for solving a nonhomogeneous second order linear equation.

Case 1: ay00 + by0 + cy = g (t) ; t 2 I; where a; b; c are constants with a 6= 0 and g (t) is a
continuous nonzero function on I:

In this case you can easily �nd two independent solutions y1 (t) and y2 (t) of ay00 + by0 + cy = 0:

(1). In case g (t) is of the form Pn (t) e
�t; Pn (t) e

�t cos �t; Pn (t) e
�t sin �t; where Pn (t) is a poly-

nomial with degree n and �; �; � 2 R with � > 0; use the method of undetermined
coe¢ cients (the easiest way).

(2). In case g (t) is not of the form in (1) ; you can use decomposition method (if the character-
istic polynomial ar2+ br+ c = 0 has two real roots), or reduction method, or variation
of parameters method. Variation of parameters method seems to be the best one
because we know two independent solutions y1 (t) ; y2 (t) of the equation ay00 + by0 + cy = 0:
Note that if you use variation of parameters method, you �rst need to rewrite the
equation as

y00 +
b

a
y0 +

c

a
y =

g (t)

a
; a 6= 0:
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Case 2: y00 + p (t) y0 + q (t) y = g (t) ; t 2 I; where p (t) ; q (t) ; g (t) are continuous functions
on I:

Remark 0.33 (Be careful.) Here the coe¢ cient of y00 (t) is 1.

Here we assume that we are given one nonzero solution y1 (t) of the homogeneous equation y00+
p (t) y0 + q (t) y = 0 on I:

(1). In case g (t) � 0 on I and we know one solution y1 (t) of the homogeneous equation y00 +
p (t) y0 + q (t) y = 0; use reduction method orWronskian method.

(2). In case g (t) is nonzero on I and we know one solution y1 (t) of the homogeneous equation
y00 + p (t) y0 + q (t) y = 0; use reduction method.

(3). In case g (t) is nonzero on I and we know two independent solutions y1 (t) ; y2 (t) (fundamental
set of solutions) of y00 + p (t) y0 + q (t) y = 0 on I; use variation of parameters method.

Remark 0.34 If the equation is of the form

P (t) y00 (t) +Q (t) y0 (t) +R (t) y (t) = G (t) ; t 2 I; P (t) 6= 0 on I; (55)

then you should divide the whole equation by P (t) �rst and then apply the above summary.

Chapter 4: Higher order linear equations.

Section 4.1: General theory of n-th order linear equations.

Consider the n-th order linear equation

y(n) (t) + p1 (t) y
(n�1) (t) + � � �+ pn�1 (t) y0 (t) + pn (t) y (t) = g (t) ; t 2 I (56)

where p1 (t) ; :::; pn (t) ; g (t) are given and continuous on I: By ODE theory, any solution y (t) to
equation (56) is de�ned on the whole interval I:
When the initial conditions

y (t0) = y0; y
0 (t0) = z0; � � �; y(n�1) (t0) = 0 (57)

are given, we have the existence and uniqueness theorem (see Theorem 4.1.1 in p. 222 of the
book). Moreover, the unique solution y (t) is de�ned on the whole interval t 2 I:
We now state the following:

Lemma 0.35 (Abel�s formula for homogeneous equation.) Let y1 (t) ; :::; yn (t) be solutions
of the homogeneous equation

y(n) (t) + p1 (t) y
(n�1) (t) + � � �+ pn�1 (t) y0 (t) + pn (t) y (t) = 0; t 2 I: (58)

De�ne itsWronskian W (y1; ::: ; yn) (t) as in the book (for simplicity, denote it as W (t)) (see p.
223 of the book). Then we have

W (t) = Ce�
R
p1(t)dt; t 2 I; (59)

for some constant C: Therefore, either W (t) � 0 or W (t) 6= 0 for all t 2 I:

Remark 0.36 (Important.) Be careful that the leading coe¢ cient in equation (58) is 1 and also
that the equation is homogeneous.
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Remark 0.37 If W (t) 6= 0 on I; fy1 (t) ; :::; yn (t)g is called a fundamental set of solutions
of equation (58) on I.

Proof. We have

W (t) =

���������
y1 y2 � � � yn
y01 y02 � � � y0n
...

...
...

...
y
(n�1)
1 y

(n�1)
2 � � � y(n�1)n

��������� ; t 2 I: (60)

Compute
dW

dt
(t) = det (M (t)) ;

where M (t) is n� n matrix whose �rst n� 1 rows are unchanged (i.e. the same as the �rst n� 1
rows of (60)) and whose n-th row is

�
y
(n)
1 (t) ; :::; y

(n)
n (t)

�
; where we know that

y
(n)
1 (t) = �

h
p1 (t) y

(n�1)
1 (t) + � � �+ pn�1 (t) y01 (t) + pn (t) y1 (t)

i
and the same for y(n)2 (t) ; :::; y

(n)
n (t) : By the expansion property of determinant, we have

dW

dt
(t) = det (M (t)) = �p1 (t)W (t) ; 8 t 2 I: (61)

The proof is done. �

Remark 0.38 To understand the identity (61), we can look at the case n = 3 and verify it. Note
that

dW

dt
(t) =

d

dt

������
y1 y2 y3
y01 y02 y03
y001 y002 y003

������ (t)
=

������
y1 y2 y3
y01 y02 y03

�p1y001 � p2y01 � p3y1 �p1y002 � p2y02 � p3y2 �p1y003 � p2y03 � p3y3

������ (t) :
We know that if we multiply the �rst row by p3 (t) and add it onto the third row, the determinant
is unchanged. Similarly, if we multiply the second row by p2 (t) and add it onto the third row, the
determinant is unchanged. By this, we have

dW

dt
(t) =

������
y1 y2 y3
y01 y02 y03

�p1y001 �p1y002 �p1y003

������ (t) = �p1 (t)
������
y1 y2 y3
y01 y02 y03
y001 y002 y003

������ (t) = �p1 (t)W (t)

for all t 2 I: Hence (61) is veri�ed.

Theorem 0.39 Let y1 (t) ; :::; yn (t) be a set of solutions to the corresponding homogeneous equa-
tion

y(n) (t) + p1 (t) y
(n�1) (t) + � � �+ pn�1 (t) y0 (t) + pn (t) y (t) = 0; t 2 I: (62)

Then the family of solutions

y (t) = c1y1 (t) + � � �+ cnyn (t) ; t 2 I (63)

with arbitrary real constants c1; :::; cn includes every solution of (62) on I if and only if

W (y1; ::: ; yn) (t0) 6= 0 for some t0 2 I (64)

(hence W (y1; ::: ; yn) (t) 6= 0 for all t 2 I).
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Remark 0.40 In the above theorem, we call

y (t) = c1y1 (t) + � � �+ cnyn (t) ; t 2 I (65)

the general solution of equation (62).

Proof. The idea of proof is similar to the previous case for second order linear equations (we need
to use the existence and uniqueness property for equation (62) with initial conditions (57)). We
omit it. �

Corollary 0.41 Let y1 (t) ; :::; yn (t) be from the above theorem such that W (y1; ::: ; yn) (t0) 6= 0
for some t0 2 I: Also let yp (t) be a solution to the nonhomogeneous equation (56) on I: Then the
general solution of equation (56) is given by

y (t) = c1y1 (t) + � � �+ cnyn (t) + yp (t) ; t 2 I (66)

for some constants c1; :::; cn:

Proof. We omit this. �

Section 4.2: Homogeneous equations with constant coe¢ cients.

Remark 0.42 Just follow textbook for this section. See p. 229 for "real and unequal roots" and p.
230-232 for "complex and repeated roots".

In this section, we look at an n-th order linear homogeneous equation with constant coe¢ -
cients, given by

L [y] := a0y
(n) (t) + a1y

(n�1) (t) + � � �+ an�1y(1) (t) + any (t) = 0; t 2 (�1;1) ; (67)

where a0; :::; an are constants with a0 6= 0: similar to the previous situation, the polynomial
equation

pn (x) = a0x
n + a1x

n�1 + � � �+ an�1x+ an = 0 (68)

is called the characteristic equation of the ODE. If we plug the function y (t) = ert (r is a
number, which can be real or complex) into (67), we get

L
�
ert
�
= pn (r) e

rt = 0: (69)

Therefore, if r is a real root of the polynomial equation pn (x) = 0; the function y (t) = ert is a
real solution of (67). If r = �+ i� (� 2 R; � > 0) is a complex root of the polynomial equation
pn (x) = 0; then the function y (t) = ert is a complex solution of (67). In this case, another root
must be �r = � � i� and we get another complex solution y (t) = e�rt: By looking at the real and
imaginary parts of the complex solutions ert and e�rt; where r = �+ i�; the corresponding two real
solutions for the two complex roots r = �+ i�; �r = �� i� are

e�t cos �t; e�t sin �t: (70)

For the case of repeated roots (real or complex), the discussion is the same as that in Chapter 3.
We omit it. It su¢ ces to look at some examples.
For your information, there is a decomposition property for polynomials with real coe¢ -

cients, which says:
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Lemma 0.43 Let pn (x) be a polynomial with degree n 2 N given by (68). Then it has a unique
(up to permutation of factors) decomposition of the form

pn (x) = a0 (x� �1) (x� �2) � � � (x� �m) (x� z1) (x� �z1) � � � (x� zk) (x� �zk) ;

where �1; :::; �m are real numbers (may be repeated) and z1; :::; zk are complex numbers (may
be repeated).

If we let D denote the operator D = d=dx; then equation (67) can be written as

pn (D) y = 0; where pn (D) = a0D
n + a1D

n�1 + � � �+ an�1D + an

and then decompose pn (D) as

pn (D) = a0 (D � �1) (D � �2) � � � (D � �m) (D � z1) (D � �z1) � � � (D � zk) (D � �zk)

and similar to the case n = 2; one can decompose an n-th order linear homogeneous equation (with
constant coe¢ cients) into n �rst order linear equations. Thus, by induction, the solution
formula for an n-th order linear homogeneous equation (with constant coe¢ cients) is similar to
that of a second order linear homogeneous equation (with constant coe¢ cients).

Example 0.44 (This is for p. 233, Example 4.) Let p (x) = x4 + 1: Then we can write it as
(completing the square)

p (x) = x4 + 2x2 + 1� 2x2 =
�
x2 + 1

�2 � �p2x�2 ;
which gives the decomposition

p (x) =
�
x2 +

p
2x+ 1

� �
x2 �

p
2x+ 1

�
:

Hence the four roots of the equation x4 + 1 = 0 are

�
p
2�

p
2i

2
;

p
2�

p
2i

2
:

One can also use complex exponential function ei� to �nd the four roots of x4 + 1 = 0; or use
the following method: decompose x4 + 1 = (x2 + i) (x2 � i) and then �nd a; b 2 R satisfying

(a+ ib)2 = i; (a+ ib)2 = �i

respectively. Also see the discussion in p. 233 of the book.

Example 0.45 Do Examples 1, 2, 3 in p. 229-233 of the book.

Example 0.46 Find the general solution of the equation (67) where n = 14 and the 14 roots of
the characteristic equation pn (x) = 0 are given by

0; 0; �4; 7; �5; �5; �5; �5; 3 + 2i; 3 + 2i; 3 + 2i; 3� 2i; 3� 2i; 3� 2i:

The answer is

y (t) =

(
c1 + c2t+ c3e

�4t + c4e
7t + (c5 + c6t+ c7t

2 + c8t
3) e�5t

+(c9 + c10t+ c11t
2) e3t cos 2t+ (c12 + c13t+ c14t

2) e3t sin 2t;

where t 2 (�1;1) :.
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Section 4.3: The method of undetermined coe¢ cients.

Just follow textbook for this section. At the same time, review Table 3.5.1 in p. 182 of the book.

Example 0.47 Do Examples 1, 2, 3, in p. 237-238, of the book.

Remark 0.48 Suppose we have an equation of the form

a0y
(n) (t) + a1y

(n�1) (t) + � � �+ an�1y(1) (t) + any (t) = 4t2 � e2t cos 8t| {z }�7t5 � e2t sin 8t| {z };
then we can combine the two functions on the left hand side together and try yp (t) to have
the form

yp (t) =

8<:
ts fc0 + c1t+ c2t2 + c3t3 + c4t4 + c5t5g e2t cos 8t| {z }
+ts f~c0 + ~c1t+ ~c2t2 + ~c3t3 + ~c4t4 + ~c5t5g e2t cos 8t| {z };

where s is the number of times (multiplicity) that 2 + 8i is a root of the characteristic equation.

Section 4.4: The method of variation of parameters.

Remark 0.49 (Be careful.) Throughout this section, we will focus on equation (71), which has
leading coe¢ cient 1 for y000 (t) :

For simplicity of discussion, we only explain the method for a third order di¤erential equation.
The discussion for higher order di¤erential equation is similar. Consider a linear di¤erential
equation given by (note that here the leading coe¢ cient of y000 (t) is 1)

y000 (t) + p (t) y00 (t) + q (t) y0 (t) + r (t) y (t) = g (t) ; t 2 I; (71)

where p (t) ; q (t) ; r (t) ; g (t) are continuous on I and g (t) can be arbitrary. Assume that we
already know a fundamental set of solutions y1 (t) ; y2 (t) ; y3 (t) for the corresponding homoge-
neous equation and we want to �nd a particular solution yp (t) of (71). Similar to the second
order equation, we try yp (t) to be of the form

yp (t) = u1 (t) y1 (t) + u2 (t) y2 (t) + u3 (t) y3 (t) (72)

and compute

y0p (t) =

�
u01y1 + u

0
2y2 + u

0
3y3| {z }
�
+ (u1y

0
1 + u2y

0
2 + u3y

0
3)

and we �rst assume that
u01y1 + u

0
2y2 + u

0
3y3| {z } = 0: (73)

By this, we get

y00p (t) =

�
u01y

0
1 + u

0
2y
0
2 + u

0
3y
0
3| {z }
�
+ (u1y

00
1 + u2y

00
2 + u3y

00
3)

and then we assume that
u01y

0
1 + u

0
2y
0
2 + u

0
3y
0
3| {z } = 0: (74)

By this, we get

y000p (t) =

�
u01y

00
1 + u

0
2y
00
2 + u

0
3y
00
3| {z }
�
+ (u1y

000
1 + u2y

000
2 + u3y

000
3 ) :

Finally, if we assume that
u01y

00
1 + u

0
2y
00
2 + u

0
3y
00
3| {z } = g; (75)
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then we will get

y000p (t) + p (t) y
00
p (t) + q (t) y

0
p (t) + r (t) yp (t)

=

(
[g (t) + (u1y

000
1 + u2y

000
2 + u3y

000
3 )] + p (t) [u1y

00
1 + u2y

00
2 + u3y

00
3 ]

+q (t) [u1y
0
1 + u2y

0
2 + u3y

0
3] + r (t) [u1y1 + u2y2 + u3y3]

= g (t) ; t 2 I:

Thus we have found a particular solution if the above three assumptions (73), (74), (75) can be
ful�lled.
In conclusion, we need to solve the system8>><>>:

u01y1 + u
0
2y2 + u

0
3y3 = 0

u01y
0
1 + u

0
2y
0
2 + u

0
3y
0
3 = 0

u01y
00
1 + u

0
2y
00
2 + u

0
3y
00
3 = g

(76)

and get (use Cramer�s rule)

u01 (t) =

g (t)

������
0 y2 y3
0 y02 y03
1 y002 y003

������ (t)
W (t)

; u02 (t) =

g (t)

������
y1 0 y3
y01 0 y03
y001 1 y003

������ (t)
W (t)

; u03 (t) =

g (t)

������
y1 y2 0
y01 y02 0
y001 y002 1

������ (t)
W (t)

:

(77)
A particular solution satisfying yp (t0) = y0p (t0) = y

00
p (t0) = 0 is given by

yp (t) =
3X

m=1

�Z t

t0

g (s)Wm (s)

W (s)
ds

�
ym (t) ; t 2 I; (78)

where

W1 (s) =

������
0 y2 y3
0 y02 y03
1 y002 y003

������ (s) ; W2 (s) =

������
y1 0 y3
y01 0 y03
y001 1 y003

������ (s) ; W3 (s) =

������
y1 y2 0
y01 y02 0
y001 y002 1

������ (s) : (79)

To prove that yp (t) given by (78) does satisfy yp (t0) = y0p (t0) = y00p (t0) = 0: We observe the
following:

Lemma 0.50 We have the following identity:

3X
m=1

Wm (t) ym (t) =

3X
m=1

Wm (t) y
0
m (t) = 0; 8 t 2 I: (80)

Remark 0.51 However, we do not have
P3

m=1Wm (t) y
00
m (t) = 0 for all t 2 I:

Proof. We �rst have
3X

m=1

Wm (t) ym (t)

= W1 (t) y1 (t) +W2 (t) y2 (t) +W3 (t) y3 (t)

=

������
0 y2 y3
0 y02 y03
y1 y002 y003

������+
������
y1 0 y3
y01 0 y03
y001 y2 y003

������+
������
y1 y2 0
y01 y02 0
y001 y002 y3

������
= y1 (y2y

0
3 � y02y3)� y2 (y1y03 � y01y3) + y3 (y1y02 � y01y2) = 0; 8 t 2 I;
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and similarly

3X
m=1

Wm (t) y
0
m (t)

= y01 (y2y
0
3 � y02y3)� y02 (y1y03 � y01y3) + y03 (y1y02 � y01y2) = 0; 8 t 2 I:

�

Corollary 0.52 The particular solution yp (t) given by (78) satis�es yp (t0) = y0p (t0) = y
00
p (t0) = 0:

Proof. By (80) we have

y0p (t) =
3X

m=1

g (t)Wm (t)

W (t)
ym (t) +

3X
m=1

�Z t

t0

g (s)Wm (s)

W (s)
ds

�
y0m (t)

=

3X
m=1

�Z t

t0

g (s)Wm (s)

W (s)
ds

�
y0m (t) ; 8 t 2 I; (81)

and also

y00p (t) =
3X

m=1

g (t)Wm (t)

W (t)
y0m (t) +

3X
m=1

�Z t

t0

g (t)Wm (t)

W (t)
ds

�
y00m (t)

=
3X

m=1

�Z t

t0

g (t)Wm (t)

W (t)
ds

�
y00m (t) ; 8 t 2 I: (82)

The above two identities imply yp (t0) = y0p (t0) = y
00
p (t0) = 0: �

We conclude the following:

Theorem 0.53 Consider the third order linear nonhomogeneous equation

y000 (t) + p (t) y00 (t) + q (t) y0 (t) + r (t) y (t) = g (t) ; t 2 I; (83)

where p (t) ; q (t) ; r (t) ; g (t) are constant function on I with initial conditions

y (t0) = y0; y0 (t0) = z0; y00 (t0) = 0:

Then the unique solution is given by

y (t) = c1y1 (t) + c2y2 (t) + c3y3 (t) + yp (t) ; t 2 I;

where the above yp (t) is from (78) and the constants c1; c2; c3 satisfy the equations8>><>>:
c1y1 (t0) + c2y2 (t0) + c3y3 (t0) = y0

c1y
0
1 (t0) + c2y

0
2 (t0) + c3y

0
3 (t0) = z0

c1y
00
1 (t0) + c2y

00
2 (t0) + c3y

00
3 (t0) = 0:

(84)

Remark 0.54 In case there is no initial conditions, we can use the inde�nite integral formula
for yp (t) :

yp (t) =
3X

m=1

�Z
g (t)Wm (t)

W (t)
dt

�
ym (t) ; t 2 I (85)

and obtain the general solution

y (t) = c1y1 (t) + c2y2 (t) + c3y3 (t) + yp (t) ; t 2 I:
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Example 0.55 Do Example 1 of the book in p. 243.

Example 0.56 (This is Problem 1 in p. 244.) Solve the equation y000 + y0 = 2 tan t; where
t 2 (��=2; �=2) :

Solution:

The solutions for the homogeneous equation are y1 (t) = 1; y2 (t) = cos t; y3 (t) = sin t; and
their Wronskian is given by

W (t) =

������
y1 y2 y3
y01 y02 y03
y001 y002 y003

������ =
������
1 cos t sin t
0 � sin t cos t
0 � cos t � sin t

������ = 1
and we also have

W1 (t) =

������
0 cos t sin t
0 � sin t cos t
1 � cos t � sin t

������ = 1; W2 (t) =

������
1 0 sin t
0 0 cos t
0 1 � sin t

������ = � cos t
and

W3 (t) =

������
1 cos t 0
0 � sin t 0
0 � cos t 1

������ = � sin t:
Therefore, we conclude (we use the inde�nite integral formula)

yp (t) =
3X

m=1

�Z
g (t)Wm (t)

W (t)
dt

�
ym (t) =

3X
m=1

�Z
(2 tan t)Wm (t) dt

�
ym (t)

=

Z
(2 tan t) dt+

�Z
(2 tan t) (� cos t) dt

�
cos t+

�Z
(2 tan t) (� sin t) dt

�
sin t

= �2 log (cos t) + 2 cos2 t+
�
�2
Z

1

cos t
dt+ 2 sin t

�
sin t

= �2 log (cos t) + 2 cos2 t� (2 log jsec t+ tan tj) sin t+ 2 sin2 t

= �2 log (cos t)� (2 log jsec t+ tan tj) sin t+ 2; t 2
�
��
2
;
�

2

�
:

Thus the general solution of the equation y000 + y0 = 2 tan t over the interval (��=2; �=2) is given
by (we absorb the constant 2 into c1)

y (t) = c1 + c2 cos t+ c3 sin t� 2 log (cos t)� (2 log jsec t+ tan tj) sin t; t 2
�
��
2
;
�

2

�
;

where c1; c2; c3 are arbitrary constants. �
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