ODE Lecture Notes, Part II, for Fall Semester 2022

Revised on 2022-12-1

Remark 0.1 This is the second part for my 2022 fall semester ODE course.

Remark 0.2 This notes is based on the textbook "Elementary Differential Equations € Bound-
ary Value Problems, 10th Edition" by Boyce € DiPrima. However, I will not follow the
book exactly. Lecture notes will be given to you via email whenever necessary.

Chapter 3: Second order linear equations.

Method of undetermined coefficients (this is Section 3.5 of the book).
See p. 182, Table 3.5.1.

Remark 0.3 The "method of undetermined coefficients” provides you a way to "guess” the form
of a particular solution. Then we plug in the form into the equation to find a correct particular
solution.

In this section, we consider a nonhomogeneous second order linear equation with constant coef-
ficients, given by

ay” (t) + by (1) + ey (1) =g (), a#0, t€(-00,00), (1)
where ¢ (¢) has one of the following forms
P, (t) M, P, (t) ** cos i, P, (t) e* sin f3t. (2)

Here P, (t) = apt"+ait" '+ +a,_1t+a,, ag # 0, is a polynomial with degree n and A, «, 3 € R
with > 0. Note that the case A = 0 and the case a = 0 are allowed. In case A = 0 and a =
0, P, (t)eM = B, (t) is just a polynomial in ¢ and P, (t) e* cos 8t becomes P, (t) cos St.

We know that the general solution y (¢) of (1) is given by

y(t) =ciyn (t) +caya (t) +yp (t),  t € (—00,00),

where y, (t) is a particular solution of the nonhomogeneous equation (1) and y; (t), 2 () are
solutions of ay” (t) + by’ (t) + cy (t) = 0, determined by the roots of the characteristic equation
ar? 4+ br + ¢ = 0. Since we know how to find y; (), v (¢), it suffices to find a particular solution
yy () of (1)

The "method of undetermined coefficients" says that we can try a particular solution
of the form given by Table 3.5.1 in p. 182 of the book and then plug in the form into the
nonhomogeneous equation (1) to determine the coefficients. After that, one can find a
particular solution y, (¢) .

Remark 0.4 Ezplain Table 3.5.1 in p. 182 ....

Remark 0.5 (Important.) The function g (t) in equation (1) must have the form in (2); otherwise,
the "method of undetermined coefficients"” does not work.



Motivation of the undetermined coefficients method.

Motivation using the equation y' (t) — Ay (t) = ape®. One can use simple first order equation
to explain the method. Consider the simple equation

Y (1) — \y (t) = ape™, ap, A, « are constants, ag # 0. (3)

The characteristic equation of the homogeneous equation ¥/ (t)—\y (t) = 0is r—\ = 0, which
has root 7 = X and so the general solution of 3/’ (t) — Ay (t) = 0 is given by y (t) = Ce for arbitrary
constant C. To find the general solution of (3), it suffices to find a particular solution y, ().

Case 1: If & # A (i.e. «a is not a root of the characteristic equation 7 — A = 0), then the
function

(e“t)l —A(e™) = (a—A)e™

is not zero and is still of the form Ke® for constant K = o — A # 0. This form matches with the
function ape® on the right hand side of the equation. Therefore, if we try y, (¢) to have the form

Yp (1) = Aoe™ (4)

and choose the coefficient A, suitably, we can obtain a particular solution of the equation (3).
To find Ay, we plug y, (t) = Ape™ into (3) and get the identity

(@ — X)) Age™ = ape™, a—X#0, ag#0. (5)

Hence, if we choose A = ~*+ (denominator is not zero), we can obtain a particular solution y, (t) =
—20-¢2 of (3). Thus the general solution of (3) is

y(t) = CeM+ &)\eat, t € (—oo0,00), C is arbitrary const.. (6)
a —

Case 2: If &« = A (i.e. « is a root of the characteristic equation  — A = 0), then identity (5)
will becomes 0 = age®, which is impossible and it suggests that we cannot try y, (¢) to have the
form y, (t) = Ape®. instead, if we try

yp (t) =t - Age™, (7)
and plug it into (3), we get the identity
Ape®™ + aAgte™ — NAgte™ = ape™ (note that a = \).

Hence if we choose Ay = ag, the function y, (t) = t - ape® will be a particular solution of (3) and
from this we can obtain general solution of (3).

Motivation using the equation y' (t) — Ay (t) = (ap + bot)e**. One step further, now we look
at the equation

y (t) — My (t) = (ag + bot)e™, ag, by, A\, a are constants, ag # 0, by # 0. (8)

Case 1: If @ # X (i.e. a is not a root of the characteristic equation » — A = 0), based on the
above observation, the only way you can try is

yp (t) = (Ao + Bot)e* for some constants Ay, By, 9)
and if you plug it into equation (8), you get

Boe™ 4 a(Ag 4 Bot)e™ — A(Ag + Bot)e™ = (ag + bot )e™,
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which is same as
B() + Oé(Ao + Bot) - )\(Ao + Bot) = ag + bot, (10)

and you need to choose Ay, By satisfying

B0+<OL—)\>AOZGO
(Oé—)\)B[):bo, CY—)\#O,
and conclude that if we choose

ao bo bo
0 a— \ (a—/\)27 0 Oé—/\7 Oé7é ) ( )

then y, (t) in (9) will be a particular solution of the ODE (8).

Case 2: If a = A (i.e. ais a root of the characteristic equation r — A = 0), then the identity
(10) becomes By = ag + bot, which is impossible to hold. Therefore you need to modify your
choice of y, () in (9). A natural next choice is (increase the order of the coefficient polynomial) to
try:

Yy, (t) = (Ag + Bot + Cot*)e™  for some constants Ay, By, Cp.

However, note that Age® is already a solution of the homogeneous equation ' (t) — Ay (¢) = 0, there
is no need to include it. Hence we choose

Yy, (t) = (Bot + Cot®)e™ =t (By + Cot) e
and for consistency of notations, we write it as
yp (t) =t - (Ag + Bot) e* for some constants Ay, By. (12)
If you plug the above y, (¢) into (8), you get
(Ao + Bot) e + tBoe™ = (ag + bot)e™

and conclude b
Ao = Qo, BO = 50

Thus when o = A, the function

b
yp (1) =t- (ao + Eot) e, te(—o0,00)

will be a particular solution of the equation (8).
We can summarize the above method in the following:

Lemma 0.6 (Motivation of the undetermined coefficients method via first-order equa-
tion.) Consider the first order nonhomogeneous linear equation

y (t) — Ay (t) = ape™, ag, A, « are constants, ag # 0. (13)

If a £ X (i.e. « is not a root of the characteristic equation r — XA = 0), then a particular solution
yp (t) of (13) has the form

yp (t) = Age™  for some constant  Aj. (14)



If a = X (i.e. «is a root of the characteristic equation r— X = 0), then a particular solution y, (t)
of (13) has the form

yp (t) =t - Age™  for some constant A,. (15)

Similarly, if we consider the first order nonhomogeneous linear equation
Y (1) — My () = (ao + bot)e™, ag, by, A, a are constants, ag # 0, by # 0. (16)

If a # X (i.e. « is not a root of the characteristic equation r — A = 0), then a particular solution

y, (t) of (16) has the form
Yy, (t) = (Ag + Bot)e®  for some constants Ay, B, (17)

If a = X (i.e. «is a root of the characteristic equation r— X = 0), then a particular solution y, (t)
of (16) has the form

Yy, (t) =t (Ao + Bot)e™  for some constants Ay, By. (18)

From Lemma 0.6, you can understand the undetermined coefficients method in Table 3.5.1 in
p. 182 of the book.

Remark 0.7 State the rule in Table 3.5.1 in p. 182 of the textbook here.

P. 183, Case 2. (Read this section by yourself.)

Remark 0.8 This section gives a detailed proof on Case 2 in p. 183 of the textbook, showing
that the method does work !! If you are interested, you can read it by yourself.

This is to verify that the method of undetermined coefficients can be used to solve a
nonhomogeneous second order linear ODE (with constant coefficients) of the form

ay” (t) + 0y (t) + ey (t) = B () e, a#0, (19)

where
P, (t) =apt" + art" " + -+ a1t +a,

is a polynomial with degree n.

Remark 0.9 Of course, one can also use reduction method to solve (19), but the method of
undetermined coefficients will be easier for g (t) of the form P, (t) eM.

We let y, (t) = u (t) e be the particular solution to be found (there is no other better try than
this), where u (¢) is to be determined. Plug y, (t) = u (t) e* into (19) to get

au” (t)eM +2u () XM +u (t) N2eM] + b [u (t) eM +u (t) ANeM] + cu (t) e = P, (t) M.
We can cancel e* and the equation becomes

au” (t) + (2aX +b)u' (t) + (aX* + DA+ ¢) u (t)

(.

~~

=P, (t) = apt™ + art" " + -+ ap_1t + ay,. (20)

Assume first that \ is not a root of the characteristic equation ar?+br+c = 0. Hence a\?>+
bA 4 ¢ # 0. One can try

w(t) = Agt" + At o Ayt + A, (21)
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Note that
{ u (t) = nAgt”’l + (n — ].) Altan + -+ 2An_2t + An—l

W (t)=nn—1)Agt" 2+ (n—1)(n—2) Ait" 3+ -+ 24, ».

If we plug (21) into (20) and compare coefficients, we can get the following system of equations
(note that P, (t) = agt" + a1t" ' + -+ - + a,_1t + a,):

[ (aX? 4 DA + ¢) Ag = ag (coefficients of t"), where a2 +b\+c#0
(2a\ + b) nAg + (aX? + DA + ¢) Ay = a1 (coefficients of ¢"~1)
an (n —1) Ag + (2aX +b) (n — 1) A1 + (aX? + DA + ¢) Ay = ay (coefficients of ") (22)

| @24, 2+ (20X +b) Ap1 + (aN? + DA + ¢) A, = a,, (coefficients of °).

Then one can solve all Ay, ..., A, and obtain u (¢), and conclude that y (t) = u (t) e is a solution
of the nonhomogeneous equation (19).

If \ is a root with multiplicity s = 1, then a\? + b\ +c¢ = 0 and 2a)\ + b # 0. The above trial
solution (21) does not work out. Instead we try

w(t) =t (Apt" + A" At An) = Agt™T At e A At
Then (20) becomes

au” (t) + (2a\ +b)u' (t) = P, (t) = agt™ + art" ™ + - - - + ap_1t + ay, (23)

J

-

and (22) becomes
( (2aX +b) (n+ 1) Ag = ap (coefficients of t"), where 2aA+b#0

an (n+ 1) Ag + (2aX + b) nA; = a; (coefficients of ¢"~1) 21
24

( a2A,,_2 + (2a)\ +b) A, = a, (coefficients of t°).

In this case we can solve all Ay, ..., A, and conclude that y (t) = u (t) e* is a solution of (19).
Finally if ) is a root with multiplicity s = 2, then a\? + b\ + ¢ = 0 and 2a\ + b = 0, but
a # 0. Then we try

u ('L’) = t2 (Aotn + Altnil + e + Anflt + An) — Aotn+2 + Altn+1 _'_ . + AntQ
Now (20) becomes

au” (t) = P, (t) = apt" + art" " + - -+ a1t +a, (25)
——

and (22) becomes
((a(n+2)(n+1) Ay = ag (coeflicients of t"), where a #0

an (n+ 1) A; = a; (coefficients of "~ 1) 26)
26

[ a2A,, = a, (coefficients of °).

Again, we can solve all Ay, ..., A, and obtain a particular solution of (19).
In conclusion, the method works for the case g (t) = P, (t) e*, A € R. The verification is done.[]
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Example 0.10 y” + 3y = 4e™, y, () = £
Example 0.11 y” — 3y’ — 4y =2e™", vy, (t) = —2te "

Example 0.12 y” + 2y = sin3t, vy, (t) = —Lsin3t (since there is no first order term y', the
solution y, (t) is also of the form sin3t).

Example 0.13 y” + 9y =sin3t, 1y, (t) = —gtcos3t.
Example 0.14 " —3y =%, y, (1) = —3t* — 5.

Example 0.15 " — 3y =t + 12, y, () =t (—5* — Zt — ).

Example 0.16 Do Example 3 in p. 179.
Example 0.17 Find general solution of the equation
y' + 2y +y=te "
Solution:
By the rule for y, (¢), it has the form
yp (t) = t° (At + B) e " = (At + Bt*) ™", where s = 2.
Plugging it into equation to get
[(6At +2B) e — 2 (3At* + 2Bt) e~" + (At® + Bt?) e
{ +2[(3At* + 2Bt) et — (At? + Bt*) e '] + (At® + Bt?) e™!

= te !,

Hence, after simplification, we need to solve 6 At + 2B = t, which gives

1
A=-, B=0.
67

Thus y, (t) = %t?’e_t is a particular solution of the equation. The general solution is

1
y(t) =cre”" + cote™" + at?’e_t, t € (—00,00).

Remark 0.18 If an equation has the form

ay’ +by' +cy=f(t)+g(t), (27)
where f(t) and g (t) both have the form in the above case 1 or case 2 (say f(t) = t?¢° and
g(t) = (3 +2t> — 6t — 5) et cos Tt), then use the undetermined coefficients to find y, (t) for the
equation

ay” +by' +cy = f(t)
and then use the same method to find gy, (t) for the equation

ay” +by +cy=g(t).
Then the general solution of (27) is given by

() =yp () + Gp (1) + 191 () + c2y2 (1),

where c1x1 (t) + coxa (t) is the general solution of the corresponding homogeneous equation.



Example 0.19 Find the correct form of a particular solution of the equation
y" — 4y + 4y = 3t2e® + 2tsint — 8e’ cos 2t.
Solution:
The correct form is

yp (t) = t* (A + Bt + C) €* + (Dt + E) cost + (Ft + G)sint + Ke' cos 2t + Le' sin 2¢,

-~

where A, ..., L are constant coeflicients to be determined. O
Example 0.20 (This is Ezxercise 30 in p. 185 with one extra term.) Find the general
solution of the equation

N
Y+ Ny = Z (am sinmmt + by, cosmmt), t € (—o0,00), (28)

m=1

where A >0 and A\ # mnm form=1, 2, ..., N.

Solution:

The two roots of the characteristic polynomial 72 + A2 = 0 are r = 4\i, where \ # mn for any
m =1, ..., N. Hence for each fixed m =1, ..., N, we try a particular solution y,, (t) of the form

Ym (t) = Ay sinmat + By, cos mrt, (29)

which is for the equation
Y + X%y = a,, sin mmt + b, cos mnt. (30)

We plug the above y,, () into equation (30) to get
(/\2 — m27r2) A, sinmnt + (/\2 — m27T2) B,, cosmnt = a,, sinmnt + b,, cos mmt

and obtain . ;

prmprrs L €yl

Hence, the general solution of the equation is given by (add all y,, (t) together):

A, = m=1, ..., N.

N
m bm
y (t) = ¢y sin A\t + co cos At + Z (m) sin mmt + (W) cos mt.
m=1
The proof is done. O

Variation of parameters method (this is Section 3.6 of the book) for
nonhomogeneous linear equations with variable coefficients.

Remark 0.21 (Be careful.) Throughout this section, we will focus on equation (31), which has
leading coefficient 1 for y” (t) .

In this section we focus on a nonhomogeneous linear equation with variable coefficients
(which has leading coefficient 1), given by

y' +pt)y +qt)y=g(t), tel, (31)
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where p (t), ¢(t), g (t) are given continuous function on some interval / C R and here the function
g (t) can be an arbitrary.

Assume we are given a fundamental set of solutions y; (t) and y, (¢) for the corresponding
homogeneous equation y” + p (t)y' + ¢ (t)y = 0 on I. To solve (31), we try a solution of the form:

y(O) =u @ () +ua w2 (t), tel (32)

and look for suitable u; (t) and us (t) . We will solve a first-order system of ODE for u, (¢) and

Remark 0.22 (Useful observation.) One can view (32) as a generalization of the reduction
method because if we only try y (t) = uy (t) y1 (t), it is exactly the reduction method.

Remark 0.23 If an equation has the form
Pty () +QM)y )+ RO y(t)=G(t), tel, P(t)#0onl, (33)
then you should divide the whole equation by P (t) first and then apply the method below.

We need to impose suitable conditions on u; () and us (t) so that the above y () is a solution
of (31). We first note that

Y (6) = o ()30 () 5 () (8] + s (1) 97 0) + 2 (65 (1)

and impose the first condition

up () () +uy )y (t) =0, tel (34)

Remark 0.24 If we impose the condition on the term wuy (t) y; () + ug () y4 (), then in y” (t) we
will encounter vy (t) and uj (t). With this, the method will not work at all.

Then, under the assumption of (34), ¢ (¢) becomes

y () =u () vy () +ua (D) wp(t), tel

and so

y' =My O +u Oy O+ mOu O +uw®y O], tel

Then we impose the second condition as

w O (1) +us M)y (t)=g(). (35)

Under the assumption of (34) and (35), we conclude

{ y (1) = ua (8) v () + uz () 3 (1)
y'(t) =g (8) +ur (t) y1 (1) +uaz (8) ys (1)




which says that y (¢) is indeed a solution of the equation (31).
It remains to claim that (34) and (35) can be satisfied. For this purpose, we need to solve the
following first-order system of ODE for u; () and us () :

{ u () g1 () +uy () y2 (£) = 0
(36)
ui () (1) + sy (1) w3 (1) = g (1)
and get
‘0 yz(t)‘ ‘ yi(t) 0 ‘
v s B0 wwew 150 90| w0
’ yi (1) y2(t) ‘ W(t) ? ' y1 () y2(t) ' Wi(t)
() vy (t) () w5 (1)
where W (t) = W (y1, y2) (t) is the Wronskian of y; (¢) and y (¢) on .
The above gives
e, (e,

and the general solution of (31) is given by

y(t) = (—/%dt—l—cl) y1 (t) + (/%(gt)(t)dtjtq) Yo (t)

=y (1) + caya () + 1y, (1),

) == ([ 280 ) o)+ ([ 25280 0 59

is a particular solution of (31). The above method is called "variation of parameters" method.
It is a powerful method.

where

Remark 0.25 (Important.) If the equation (31) has initial conditions y(to) = vo, ¥ (to) =
20, to € I, then there are two ways to find the unique solution y(t). (1). If you know y, (t)
explicitly, use the formula y (t) = c1y1 (t) +caya (1) +y, (t) to find c1, co. (2). If you do not know
yp (1) explicitly, you can use definite integrals to write the general solution y (t) as

ey () + caya (t)

0= l— (/t:%é)(s)ds) () + </t:%é)(s)ds) " (t)] Cier O

and then require ¢y, co to satisfy the following
{ a1y (to) + c2y2 (to) = Yo

c1yy (to) + cayh (to) = 2o.

This is due to the fact that the particular solution

w=- ([ 22w ([ 200 e e o

y(to) =y (to) = 0. (41)
To see this, we clearly have y, (to) = 0. As fory, (to) = 0, we note that

o o) == (L2 Yo ) +0- 51 ) 4 (P ) et 40 s 00 =0 a2

satisfies



Example 0.26 (This is Example 1 in p. 186.) Solve the equation
y" (t) +4y (t) = 3csct, 0<t<m. (43)

Solution:

Read the solution in the textbook by yourself. 0

Example 0.27 (This is Exercise 5 in p. 190.) Solve the equation
y' (1) +y (t) = 2tant, —g <t< g (44)
Remark 0.28 Note that one cannot use the undetermined coefficients method to solve (44).

Solution:

Since we know two independent solutions ; (¢) = cost and ys (t) = sint of y” (t) +y (t) = 0, we
can use variation of parameters method. We first compute

W) =Wlyy) ) =1 ") cost

cost sint ‘

and by (38) we know that the general solution of (44) is given by

Y () = 1 cost+ cpsint + (—/”(”W'—é;*mdt) o () + </%dt> (),

where

w(t) 2tant o g [(Lmcos?)
—/W—(t)dt— /( £) (2 tan ) dt 2/ gy 2/( £ — cost) dt

and

/%dt:/(mst) (2tant) dt = 2/Sintdt-

We conclude

y(t) = crcost + cysint + (—2 / (sect — cost) dt) cost + <2 / sin tdt) sin ¢

=cycost+ cpsint + (—2/sectdt + 2sint> cost + (—2cost)sint
=cycost+ cosint + (—2log |sect + tant|) cost. (45)
O

Remark 0.29 (Compare with the reduction method.) (Read this remark by yourself.) If
we use reduction method, we can let y (t) = v (t)sint (sint is a solution of y" (t) +y(t) = 0) and
get

V" (t)sint + 20" (t) cost — v (t)sint + v (t)sint = 2tant,

which gives (let w (t) = ' (t))

wn
.
=
~
(@]
]
n
DO |
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and then

cos cos 2 ]_
w(t) =0 (t) = e | a0 (/ J St dt+C> =— (2/sinttantdt—i—6’)
cost sin”t
1 C 1
= —— (2 [ (sect —cost)dt +C + - 75(2log|seczf—i—tant|—2smt)

sin“t sin? ¢

Finally, we have

C 1
t) = dt
v(®) /sith +/sin2t

1 1
= —C’cott+K+/ (210g|sect~|—tant|)dt 2/ dt,
sin? sint

(2log |sect + tant| — 2sint) dt + K

-~

where, by the integration by parts, we find

1
/ . 2t(210g|sec7f+tanzf|)dzf:—/(210g|sect—l—tant|)al(cott)
sin

J

~~

— (2log|sect + tant|) (cot t) + 2 —dt
sint

J/

~

and conclude

y(t) =v(t)sint =y (t) = [-Ccott+ K — (2log|sect + tant|) (cot t)]sint
= cycost+ casint — (2log|sect + tant|) cost. (46)

We see that (46) is the same as (45). This method clearly involves more computations. This is
because we only make use of one solution sint.
Example 0.30 (This is Exercise 10 in p. 190.) Solve the equation

t

m, t € <—O0,00>

y'(t) =2y () +y (1) =

Solution:

Since we know two independent solutions y; (t) = €' and ys (t) = te! of y” (t) — 2y (t)+y (t) = 0,
we can use variation of parameters method. We first compute

W =W @ =5 e
b1, 92 et et +tet
and so
te' - 5 et . <
_ +t 1+t2
—( / i dt—l—c) —|—(/ o dt—l—c)t
t 1
dt t te!
( /1+t2 +Cl>e+( 1+ ¢2 )e
1
— (—5 g(1+t*) +c ) e+ (tant + o) te',
which is the general solution. U
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Example 0.31 Find the general solution of the equation
ty' () — (L+8)y (t) +y (t) = t?%e*, te€ (0,00), (47)

given that y, (t) =1+t and yz (t) = €' is a pair of fundamental solutions for the corresponding
homogeneous equation.

Solution:

To apply the variation of parameters method, we need to rewrite the equation to have
leading coefficient of y” (t) equal to 1. We have

/0= (B 0+ 0 -1, te 000,

and obtain g (t) = te*'. By the variation of parameters method, we have

yp (1) = ( Mg(t)t)dt) yp () + ( Mdt) y2 (t), te(0,00),

W (Y1, 92) ( W (y1,92) (t)
where .
1+t e
W) (= | T4 =t
Hence

yp (t) = (—/et ?;;B%dt) (1+1¢) + (/ O%gt’te%dt) et
= (—/e%dt) (14+1)+ (/(1 +1) etdt) ¢!

= (—%e%) (L+1)+ (te') ' = % (t—1)€*.

and conclude the general solution for equation (47):

1
y(t) = Cr(1+1) + Gl + - (t=1)é¥, 1€ (0,00).

An interesting equation from "mechanics of vibrations".
Consider the equation
v' () +y(t)=g(t), ¢g(t) is continuous on [

with initial condition
Y (to) = Yo, y/ (t[)) =29, Uty€ I.

This equation appears frequently in mechanics of vibrations. If we choose y; (t) = cost, s (t) =
sint, then we have W (t) = W (y1,y2) (t) = 1 and by Remark 0.25 the particular solution y, (t)
(with y, (to) = ¥, (to) = 0) in (40) is given by

= —(cost) /t g (s)sin sds + (sint) / g (s) cos sds

to to

t t
:/g(s)(sintcoss—costsins)ds:/g(s)sin(t—s)ds, tel (48)

to to
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The general solution of the homogeneous equation y” (t)+y (t) = 0 satisfying the initial condition y (to) =
Yo, ' (to) = 2o, is given by

c1y1 (t) + coya (t) = crcost + cosint, tel
and we need to find ¢, ¢y satisfying
c1costy + cosinty = yo
{ —cy 8intg + co costy = 2o,

which gives
c1 =Yg Costy — zpsinty, co = Yosinty + zpcosty,

and then

1y (1) + caya (1)
= (yo costy — zgsinty) cost + (yo sintg + 2z costy) sint
= yp cos (t — tg) + zosin (t — to) . (49)

Therefore the solution satisfying the initial condition is given by the nice solution formula:

t
y(t):ygcos(t—to)+zosin(t—t0)—|—/g(s)sin(t—s)ds, tel. (50)
K —_ 2N

- s
-~

Now assume that [ = (—o0,00) and ¢ (t) is a 2r-periodic function defined on (—o0,00) (g (%)
usually comes from the external force acting on the mechanical system, say string vibration). The
particular solution y, () in (48) may not be 27-periodic in general (but the homogeneous
part yo cos (t — tg) + 2o sin (t — tg) is clearly 27-periodic). Note that we have

Yp (t+2m) — Yp (t)

:/H%g(s)sin(t—f—%r—s)ds—/tg(s)sin(t—s)ds:/tt+2ﬂg(3)sin(t—s)ds

to to

t+27 t42m
= — (cost) / g (s)sinsds + (sint) / g () cos sds
t t

—~ —~

2w 2m
= —(cost) / g (s)sin sds + (sint) / g (s) cos sds
0 0

_ <(_cost,sint), ( /0 "o (sin s /:ﬂg (5) cos 8d$>>

and so we have y, (t + 2m) = y, (t) for all t € (—o00,00) if and only if the 27-periodic function
g (s) satisfies

2m 2w
/ g (s)sinsds = / g (s) cossds = 0. (51)
0 0

If we take g (t) = cost ((51) is not satisfied), then one can check that y, (£) = 3tsint is a particular
solution (with y, (0) =y, (0) = 0) of the equation

y" (t) +y (t) = cost,

but it is not 27-periodic even if g (t) = cost is 2m-periodic. In fact, one can see that y, (t) in (48)
is 27m-periodic if and only if ¢ (t) is 27-periodic and satisfies (51), for example, say g (t) = cos 2t.

13



Nonhomogeneous Euler equation.

One can combine the variation of parameters method and change of variables to solve a nonho-
mogeneous Euler equation, given by

2" (t) +aty (1) + By (t) = f(t), te€(0,00), a, B constants, (52)

where f (t) can be any arbitrary continuous function defined on ¢ € (0,00). By the change of
variables © = logt, = € (—00,00), the above equation becomes

d?j

dw2+(&—1)%+5?}($)=F($), z € (—00,00), (53)

where g (z) =y () and F (z) = f (e”) . We can know a pair of fundamental solutions {y; (t), s (t)} for
7" (2)+ (a— 1) ¢ (z)+ 87 (x) = 0 and then use the variation of parameters method to find the
general solution 7 (x) of (53) and then change back to get y (¢). It will be the general solution of

(52). On the other hand, if F' (x) in (53) has the forms appeared in the undetermined coefficients
method, then you can use that method to find the general solution 7 (x) of (53).

Remark 0.32 In case the Fuler equation has the form
At*y" () + Bty (t) +Cy (t) = f(t), t€(0,00), A#0, B, C are constants,
then equation (53) becomes

5 dj
A +(B=A) 2+ C(a) = F (). (54)

Summary of solution methods for second order linear equations.

This is a summary for solving a nonhomogeneous second order linear equation.

Case 1: ay”" + by +cy =g(t), t € I, where a, b, ¢ are constants with a # 0 and ¢ (¢) is a
continuous nonzero function on /.

In this case you can easily find two independent solutions y; (¢) and ys (¢) of ay” + by’ + cy = 0.

(1). In case g (t) is of the form P, () e, P, (t)e* cos 8t, P, (t) e* sin Bt, where P, () is a poly-
nomial with degree n and A\, o, § € R with 8 > 0, use the method of undetermined
coefficients (the easiest way).

(2). In case g (t) is not of the form in (1), you can use decomposition method (if the character-
istic polynomial ar? + br + ¢ = 0 has two real roots), or reduction method, or variation
of parameters method. Variation of parameters method seems to be the best one
because we know two independent solutions y; (¢), ys (t) of the equation ay” + by’ + cy = 0.
Note that if you use variation of parameters method, you first need to rewrite the
equation as

b c t
y"+—y’+—y:—g<>, a # 0.
a a a
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Case 2: v +p(t)y +q(t)y=g(t), t € I, where p(t), q(t), g (t) are continuous functions
on /.

Remark 0.33 (Be careful.) Here the coefficient of y” (t) is 1.

Here we assume that we are given one nonzero solution y; (t) of the homogeneous equation y” +
p(t)y +q(t)y=0on I.

(1). In case g (t) = 0 on I and we know one solution y; (¢) of the homogeneous equation y” +
p(t)y +q(t)y =0, use reduction method or Wronskian method.

(2). In case ¢ (t) is nonzero on [ and we know one solution y; (t) of the homogeneous equation
v +p(t)y +q(t)y =0, use reduction method.

(3). Incase g (t) is nonzero on [ and we know two independent solutions y; (t), y2 (f) (fundamental
set of solutions) of ¥ + p(t)y' + ¢ (t)y = 0 on I, use variation of parameters method.

Remark 0.34 If the equation is of the form
POy () +QMy O +R(Hy(t)=GCG(t), tel, P{)#0onl, (55)

then you should divide the whole equation by P (t) first and then apply the above summary.

Chapter 4: Higher order linear equations.

Section 4.1: General theory of n-th order linear equations.

Consider the n-th order linear equation

g O Ao Oy O+ (DY () e Dy () =g (1), tel (56)

where p; (t), ..., pn (t), g(t) are given and continuous on /. By ODE theory, any solution y (¢) to
equation (56) is defined on the whole interval I.
When the initial conditions

y(to) =vo, ¥ (to) =20, - v™ Y (t) =7 (57)

are given, we have the existence and uniqueness theorem (see Theorem 4.1.1 in p. 222 of the
book). Moreover, the unique solution y (¢) is defined on the whole interval ¢ € I.
We now state the following;:

Lemma 0.35 (Abel’s formula for homogeneous equation.) Let y (t), ..., y, (t) be solutions
of the homogeneous equation

g O+ Oy O+ (DY )+ (Y (£) =0, teT (58)

Define its Wronskian W (y1, ..., yn) (t) as in the book (for simplicity, denote it as W (t)) (see p.
223 of the book). Then we have

W (t) = Ce Im®dt 4 (59)
for some constant C. Therefore, either W (t) =0 or W (t) # 0 for allt € I.

Remark 0.36 (Important.) Be careful that the leading coefficient in equation (58) is 1 and also
that the equation is homogeneous.
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Remark 0.37 If W (t) # 0 on I, {51 (), ..., yn (t)} is called a fundamental set of solutions
of equation (58) on I.

Proof. We have

1 Y2 o Yn
v Yoo ottt Un
ww=| . T . T | tel (60)
ygn—l) yén—l) o y'r(zn_l)
Compute
aw
— (t) =det (M (¢
(1) = et (M (1),
where M (t) is n X n matrix whose first n — 1 rows are unchanged (i.e. the same as the first n — 1
rows of (60)) and whose n-th row is (y§”) ), ..., yi (t)) , where we know that
y (1) = = [pr Oy O+ -+ P (O8O + o (D)9 ()]
and the same for 43" (¢), ..., y” (t). By the expansion property of determinant, we have
aw
- (t) =det (M (t)) =—p ()W (t), Vitel. (61)
The proof is done. O

Remark 0.38 To understand the identity (61), we can look at the case n = 3 and verify it. Note
that

AW d Y Y2 Y3

o _ / /
o (t) v U (t)

! 7 1

Y Ys Y3
n Y2 Y3
= i Y Ys (t).

—p1Y] — P2yl — P3y1 —D1Yy — D2vh — D3Ya  —P1Ys — Dol — P3Ys

We know that if we multiply the first row by ps (t) and add it onto the third row, the determinant
is unchanged. Similarly, if we multiply the second row by py (t) and add it onto the third row, the
determinant is unchanged. By this, we have

AW Y1 Y2 Y3 Y Y2 Y3
— ) =] u Ys s | =-pm@®|vi v ¥ |t)=-pnOW(E
dt . /A "o " % 1" 1"

DP1Yy DP1Y2 P1Ys Y1 Y2 Us

for allt € 1. Hence (61) is verified.

Theorem 0.39 Let y; (t), ..., yn (t) be a set of solutions to the corresponding homogeneous equa-
tion
Yy )+ ()Y () A A paat ()Y () pa (B)y (H) =0, tel (62)
Then the family of solutions
Yy (t) =W (t> + o Caln (t) ) tel (63)
with arbitrary real constants ¢y, ..., ¢, includes every solution of (62) on I if and only if

Wy, ooy yn) (to) 0  for some to€ (64)
(hence W (y1, ..., yn) (t) #0 forallt € I).
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Remark 0.40 In the above theorem, we call

yt)=cay (t)+---+euyn(t), tel (65)
the general solution of equation (62).

Proof. The idea of proof is similar to the previous case for second order linear equations (we need
to use the existence and uniqueness property for equation (62) with initial conditions (57)). We
omit it. 0

Corollary 0.41 Let y; (t), ..., yn (t) be from the above theorem such that W (y1, ..., yn) (to) # 0
for some ty € I. Also let y, (t) be a solution to the nonhomogeneous equation (56) on I. Then the
general solution of equation (56) is given by

y(t)=cm )+ +eyn (t)+y,(t), tel (66)
for some constants cy, ..., cp.

Proof. We omit this. O

Section 4.2: Homogeneous equations with constant coefficients.

Remark 0.42 Just follow textbook for this section. See p. 229 for "real and unequal roots" and p.
230-232 for "complex and repeated roots”.

In this section, we look at an n-th order linear homogeneous equation with constant coeffi-
cients, given by

L{y) := agy™ () + ary™ V() + -+ an1y™ () + any (1) =0, t€(—o0,00),  (67)
where ag, ..., a, are constants with ay # 0. similar to the previous situation, the polynomial
equation

o (2) = apz" + a1zt -4 a, 17 +a, =0 (68)

is called the characteristic equation of the ODE. If we plug the function y (t) = €™ (r is a
number, which can be real or complex) into (67), we get

Lle"] =pn(r)e” =0. (69)

Therefore, if r is a real root of the polynomial equation p, (z) = 0, the function y (t) = €™ is a
real solution of (67). If r = a+if (o € R, § > 0) is a complex root of the polynomial equation
pn () = 0, then the function y (¢) = ¢ is a complex solution of (67). In this case, another root
must be 7 = o« — i3 and we get another complex solution y () = ™. By looking at the real and
imaginary parts of the complex solutions e’ and e, where r = o+ /3, the corresponding two real
solutions for the two complex roots r = a4+ i3, ¥ = a — i[5 are

e cosBt, e sinft. (70)

For the case of repeated roots (real or complex), the discussion is the same as that in Chapter 3.
We omit it. It suffices to look at some examples.

For your information, there is a decomposition property for polynomials with real coeffi-
cients, which says:
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Lemma 0.43 Let p, (x) be a polynomial with degree n € N given by (68). Then it has a unique
(up to permutation of factors) decomposition of the form

P (1) = 6 (2 = M) (2 = Aa) -+ (2 = M) (2= 21) (@ = 21) -~ (& — ) (2 = 7).

where A1, ..., Am are real numbers (may be repeated) and zy, ..., zp are complexr numbers (may
be repeated).

If we let D denote the operator D = d/dx, then equation (67) can be written as
pn(D)y =0, where p,(D)=ayD"+a; D" +---4a,_1D +a,
and then decompose p, (D) as
Pn (D) =ao (D= M) (D —=X) - (D=An) (D =2)(D—=2) (D= 2)(D - z)

and similar to the case n = 2, one can decompose an n-th order linear homogeneous equation (with
constant coefficients) into n first order linear equations. Thus, by induction, the solution
formula for an n-th order linear homogeneous equation (with constant coefficients) is similar to
that of a second order linear homogeneous equation (with constant coefficients).

Example 0.44 (This is for p. 233, Example 4.) Let p(x) = x* + 1. Then we can write it as
(completing the square)

2
plr)=a*+222+1-22° = (902+1)2 - (\/5:70) ,
which gives the decomposition
p(z) = <x2+\/§$+1) <x2—\/§x+1> .

Hence the four roots of the equation x* +1 =0 are

—V2 £+ V2 V2 +V2i
2 ’ 2

One can also use complex exponential function e to find the four roots of x* + 1 = 0, or use
the following method: decompose x* + 1 = (22 + i) (2% — i) and then find a, b € R satisfying

(a+ib)* =i, (a+ib)>=—i
respectively. Also see the discussion in p. 233 of the book.
Example 0.45 Do Examples 1, 2, 3 in p. 229-233 of the book.

Example 0.46 Find the general solution of the equation (67) where n = 14 and the 14 roots of
the characteristic equation p, (x) =0 are given by

0,0, =4, 7, =5, =5, —5, —5, 3+2i, 3+2i, 34+2i, 3— 2, 3—2i, 3— 2i.

The answer s

y(t) =

c1 + cot + cze™ 4 cge™ + (c5 + ct + crt? + cgtd) e
+ (co + crot + c11t?) €3t cos 2t + (19 + ¢yt + c14t?) €3 sin 2t,

where t € (—00,00) ..
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Section 4.3: The method of undetermined coefficients.

Just follow textbook for this section. At the same time, review Table 3.5.1 in p. 182 of the book.
Example 0.47 Do FExamples 1, 2, 3, in p. 237-238, of the book.
Remark 0.48 Suppose we have an equation of the form

aoy™ (t) + a1y ™V () + - - -+ a1y (t) + any (t) = 4t% - ¥ cos 8t —Tt° - ¢* sin 8t,

then we can combine the two functions on the left hand side together and try y, (t) to have

the form
t5{co + c1t 4 cat? + cat® + cqtt + c5t®} ¢ cos 8t

Yp (t) = B ~ N - - -
5 {Go + Cot + Eot? + st + E4tt + E5t°} e cos St

where s is the number of times (multiplicity) that 2 + 8i is a root of the characteristic equation.

Section 4.4: The method of variation of parameters.
Remark 0.49 (Be careful.) Throughout this section, we will focus on equation (71), which has
leading coefficient 1 for y" (t) .

For simplicity of discussion, we only explain the method for a third order differential equation.
The discussion for higher order differential equation is similar. Consider a linear differential
equation given by (note that here the leading coefficient of y" () is 1)

vy O +p®y () +q®)y () +rt)y@)=g(t), tel, (71)

where p(t), q(t), 7(t), g(t) are continuous on I and g (¢) can be arbitrary. Assume that we
already know a fundamental set of solutions y; (t), y2 (), ys (t) for the corresponding homoge-
neous equation and we want to find a particular solution y, (t) of (71). Similar to the second
order equation, we try y, (t) to be of the form

Yp (1) = ua (£) 91 () + ua (£) y2 () + us () ys (1) (72)
and compute

() = (y Ty + y) ¢ (tnd + syl + s

and we first assume that

y’lyl + sy + Uéyg = 0. (73)

By this, we get
v (1) = (yay; Tl + ugyg) T (g + gl + gyl

and then we assume that
uyy) + usys + uzys = 0. (74)

By this, we get
Yy (1) = (U’lyi’ + gy + ugyé> + (g’ + w2y’ + usyy') -

!
/

Finally, if we assume that
uyyy + uhyy + uys = g, (75)
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then we will get
W0+ ()8l (6) - (0) 5 (1) + 7 (1) (0
{ [9 (1) + (urg" + uays’ + usys’)] 4 p (t) [uryy + uayh + usys)
+q (1) [uryy + uays + uzys] + 7 (t) [uryr + uaya + uzys]

Thus we have found a particular solution if the above three assumptions (73), (74), (75) can be
tulfilled.
In conclusion, we need to solve the system

iy + ubys + ubys =0
uh Yy + upyy + uzyz =0 (76)
/A4 !N ! /!

U1Y; + UsYy + Usys = g

and get (use Cramer’s rule)

0 y2 u3 y1 0 ys3 y1 Y2 0
g0 vy ys |(t) gty 0 yz|(t) g | v vy 0] (t)
1y y3 v 1y vl oyy 1
(1) = ' (t) = ' (t) =
(77)
A particular solution satisfying y, (to) = v, (to) = v, (to) = 0 is given by
3 t
g(8) Wi (s)
t) = -~ d m(t), tel,
w0 =3 ([ 2 ), i (78)
m=1 0
where
0 vy w3 y1 0 w3 y1 y2 O
Wi(s)=10 w5 w3 |(s), Wal(s)=|y; 0 yz |(s), Wz(s)=]uy; vy 0|(s). (79)
1 ys ys yi 1 y3 yi Yy 1

To prove that y, (t) given by (78) does satisty y, (to) = ¥, (fo) = v, (to) = 0. We observe the
following;:

Lemma 0.50 We have the following identity:
3 3
> W ym () => Wu )y, () =0, Vil (80)
m=1 m=1
Remark 0.51 However, we do not have S0 _ W, () y!, (t) =0 for all t € I.

Proof. We first have

NE

Won (£) ym (1)

3

Wi () ys (t) + Wa (t) ya (t) + Ws (1) ys (2)
0
0

Y2 Y3 yi 0 w3 yi Y2 0
= va Y3 |+ |y 0wy |+ Yy yy O
Y1 Yy Y3 voy2 Yy AT T

=11 (25 — Yays) — v2 (1ys — ¥1ys) + ys (nys — ¥1y2) =0, Viel,
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and similarly

NE

Wi (£) yy, (1)

1
= vy (2 — yays) — v (v1y5 — Y1ys) + v (iys — Yiy2) =0, Vi€ L

3

U
Corollary 0.52 The particular solution y, (t) given by (78) satisfies y, (to) =y, (to) = ¥, (to) = 0.
Proof. By (80) we have

i) = 32 L0l 00+ 3 ([ 25t ) a0

. : " g(s) Wi (5) s )y
_m:1</to O d)ym(t), Viel, (81)
and also
=31 e+ > ([ o as) o
-2 ( /to g <tv>vm;g ®) ds) y' (), Vtel. (82)
The above two identities imply y, (to) = y,, (to) = v, (to) = 0. u

We conclude the following;:
Theorem 0.53 Consider the third order linear nonhomogeneous equation
v )+ @y @) +a@)y () +r )y ) =g(t), tel, (83)
where p (t), q(t), r(t), g(t) are constant function on I with initial conditions
y(to) =y, Y (to) =2, Y (to) =10
Then the unique solution is given by
y () = ey (8) + caya (1) + cays (1) +yp (1), e,
where the above y, (t) is from (78) and the constants c1, cq, c3 satisfy the equations
a1y (to) + c2y2 (o) + c3ys (to) = Yo
c1y (to) + 2y (to) + c3y5 (to) = 2o (84)
cryy (to) + c2ys (to) + cays (to) = Yo

Remark 0.54 In case there is no initial conditions, we can use the indefinite integral formula

for y, (1) : .
yp(t)zz</g(t%/—w(/z;®dt> (), tel (85)

1
and obtain the general solution

y(t) =ciyr (t) + oy () + c3ys (B) +yp, (), te L
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Example 0.55 Do Example 1 of the book in p. 243.

Example 0.56 (This is Problem 1 in p. 244.) Solve the equation y" + y' = 2tant, where
€ (—m/2,7/2).

Solution:

The solutions for the homogeneous equation are y; (t) = 1, y2 (t) = cost, ys(t) = sint, and
their Wronskian is given by

Y1 Y2 Y3 1 cost sint
Wit)=|vyy vb v5|=|0 —sint cost |=1
vl oyy oyl 0 —cost —sint
and we also have
0 cost sint 1 0 sint
Wy(t)=|0 —sint cost |=1, Wy(t)=|0 0 cost |=—cost
1 —cost —sint 0 1 —sint
and
1 cost O
W3(t)=|0 —sint 0 |= —sint.
0 —cost 1

Therefore, we conclude (we use the indefinite integral formula)

3

w0 =3 ([ X a) v Z(/ (2tan ) W, () i 1)

m=1 =1

_ /(2tant) dt + (/ (2tant) (= cost) dt> cost + (/ (2tant) (= sin?) dt) sint

1
= —2log (cost) + 2cos?t + <—2 —dt + 2smt> sin ¢
cost

= —2log (cost) +2cos’t — (2log |sect + tant|)sint 4 2sin’ ¢
= —2log (cost) — (2log|sect + tant|)sint +2, t€ <—g, g) :

Thus the general solution of the equation y” + vy’ = 2tant over the interval (—m /2, 7/2) is given
by (we absorb the constant 2 into ¢;)

y(t) = c1 + cycost + cgsint — 2log (cost) — (2log [sect + tant|)sint, ¢ € (—g —) :

where ¢, ¢, c3 are arbitrary constants. 0]
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